Paediatric Haem/Onc

Nicola Kelly and Rachel McGalliard

Learning Objectives

Haematology

- Age related changes in haemoglobin level: know approximate values in infants and young children.
- Iron deficiency anaemia: epidemiology, at risk groups, consequences to health (including neurodevelopment).
- Haemophilia: mode of inheritance, diagnosis and management.

Oncology

- Acute leukaemia: classification, presentation, diagnosis, management and prognosis.
- Wilms' tumour: presentation, management and prognosis.
- Neuroblastoma: presentation, management and prognosis.

Age related changes in Hb levels

- High at birth (14-20 g/dL)
- Falls to 9-13 g/dL at 2-3mo in term infants
- HbF decline postnatally to 2% by 1y
- >10 past infancy
- >11 in 2nd decade

Iron deficiency anaemia

• Microcytic, hypochromic anaemia.

ΔΔ

- β-thalassemia trait
- α-thalassemia trait
- anaemia of chronic disease.

Epidemiology

- Commonest cause of anaemia.
- Usually inadequate dietary intake rather than loss of iron.

Diagnosis of iron deficiency anaemia

- FBC
- blood film
- iron status
- Take detailed dietary Hx.

At risk groups for dietary iron deficiency

- Preterm infants
- Term infants: delayed mixed feeding or early introduction of unmodified cow's milk.
- Children
 - Poor diet associated with low socio-economic status or strict vegetarian diet.
 - Malabsorption
 - Blood loss: menstruation, hookworms, repeated venesection in babies, Meckel's diverticulum.

Consequences to health

MILD	May be asymptomatic
MODERATE	 irritability, lethargy, fatigue, anorexia O/E pallor of skin and mucous membranes
SEVERE	 CCF may need transfusion in infancy/ early childhood is associated with developmental delay and poor growth (reversible with treatment)

Management

• Dietary advice, oral iron.

Genetic Disorders (Haem)

- Haemophilia A (factor VIII deficiency)
 - X-linked recessive disorder (affects boys)
 - 1/3rd new mutation

Diagnosis

- Prolonged APTT due to defect in intrinsic pathway.
- Factor VIII assay confirms diagnosis

Clinical Features

- Spontaneous, traumatic bleeding
 - subcutaneous
 - intramuscular
 - intra-articular

History

• Early bruising, abnormal bleeding from time begin to walk/fall over.

Management

- IV infusion of factor VIII concentrate
 - Treats and prevents bleeding
 - Prompt therapy reduces chronic arthropathy
 - Traumatic contact sports are forbidden.
- Mild haemophilia: desmopressin to release factor VIII from tissue stores.

Haemophilia B aka Christmas disease

- Factor IX deficiency
- Clinically similar to haemophilia A, but rarer.
- Prolonged APTT and reduced factor IX activity.
- Treatment= prothrombin complex concentrate

vWF deficiency

- AD inheritance: Affects girls and boys
- Combination of factor VIII deficiency and platelet dysfunction, but usually mild.

Acute Leukaemia

Classification

- Acute lymphocytic leukaemia (ALL)
 - Common subtype (75%) i.e. non-T, non-B cell.
 - Peak 3-6years
 - T-cell subtype (15%)
 - tendency for older children.
- Acute myeloid leukaemia (AML)
 - 80% associated with chromosomal abnormalities.

Presentation

- Often insidious, sometimes very rapid
 - Malaise
 - Pallor
 - Abnormal brusing
 - Lymphadenopathy
 - Bone pain
 - Hepatosplenomegaly
 - Infections

Diagnosis

FBC: Low Hb and thrombocytopenia

• Blood film: Evidence of blast cells

- Bone marrow examination
 - essential to confirm & identify cytogenetic characteristics.

Management

- Initial treatment
 - blood transfusion
 - treat infection
 - protect kidneys against rapid cell lysis about to occur (with allopurinol)

induction	load and restore bone marrow function.
2. Intensification therapy	blocks of chemo to consolidate remission.
3. Early CNS directed therapy	intrathecal chemo to prevent CNS relapse

Relapse has poor prognosis.

transplant may be considered

for boys)

1. Remission

4. Maintenance

5. Treatment of

therapy

relapse

• intensive regimen: 3-5 drugs to reduce tumour

modest intensity over long period (2y for girls, 3y

Plus Co-trimoxazole to prevent Pnumocystis carnii

High-dose chemo, total body irradiation and BM

Prognosis

- ALL
 - 65% cured:
 - 75% remission
 - 75% survival beyond 5 years.

Prognostic factor	Good	Bad
Age (y)	2-9	<1
Sex	female	male
WCC (tumour load)	<50	>50
Tumour type	Common (non-T, non-B)	T or B cell types

- AML
 - Worse prognosis.

Wilms' Tumour

- From embryological renal tissue
- Susceptibility gene (WT1)

Presentation

- 80% < 5y, Rare >10 y.
- Abdominal pain (haemorrhage into tumour)
- Haematuria
- Hypertension: 25%. Compression or renin production.
- Usually unilateral, 5% bilateral

Diagnosis

- CT or USS (intrinsic renal mass) & biopsy.
- Search for distant metastases (lung, liver)

Management

- Surgical resection of primary
- Chemotherapy for all
- Radiotherapy for advanced disease

Prognosis

- 80% cure if no metastases
- 60% with metastases
- If relapse then poor prognosis

Neuroblastoma

- Malignant tumour arising SNS
- Commonly develops in adrenal gland or sympathetic chains

Presentation

- Abdominal mass (most common presentation; firm, nontender; may not be primary)
- Systemic signs (pallor, weight loss, bone pain)
- Hepatomegaly or LN enlargement
- Eye metastasis = unilateral proptosis
- "Dancing eye"
- Watery diarrhoea
- Mediastinal mass on CXR

Diagnosis

- Raised urinary catecholamines. Used to monitor therapy response
- Confirmatory biopsy
- MIBG: scan with a radiolabelled tumour-specific marker
- Bone scan for mets

Management

Surgical resection, chemotherapy, irradiation

Prognosis	Good	Bad
Age	<2y (In v. young may spontaneously regress)	>2y
Stage	Localised primary	Metastatic disease (30% survival)
N-myc status	Single copy	amplification

Any questions?