Paediatric Cardiology

Elliott Carande
Introduction

• Daunting topic which is very easy to get confused by
• Try and understand the basics of congenital heart defects to logically approach the problem!
• General introduction to murmurs
• Go back over the different types of heart failure
 – Clinical signs
 – Findings
 – Treatments
Learning Objectives

• **Age related changes in heart rate and blood pressure**
 - Know approximate values for infants and toddlers

• **Innocent murmurs**
 - Definition and how to distinguish from pathological murmurs

• **Heart failure**
 - Symptoms and signs in infants and children
 - Possible causes

• **Common forms of congenital heart disease**
 - Natural history and management of:
 - Acyanotic
 - ASD, VSD, PDA, coarctation
 - Cyanotic
 - Fallots, transposition

• **Infective endocarditis**
 - Which children are at risk?
 - Preventative measures
Age Related Changes in HR & BP

• Important to remember that:
 – Paediatric HR is much faster than adult normal
 – BP is lower

<table>
<thead>
<tr>
<th>Age</th>
<th>RR</th>
<th>HR</th>
<th>SBP (50th centile)</th>
</tr>
</thead>
<tbody>
<tr>
<td><1</td>
<td>30-40</td>
<td>110-160</td>
<td>80-90</td>
</tr>
<tr>
<td>1-2</td>
<td>25-35</td>
<td>100-150</td>
<td>85-90</td>
</tr>
<tr>
<td>2-5</td>
<td>25-30</td>
<td>95-140</td>
<td>90-95</td>
</tr>
<tr>
<td>5-12</td>
<td>20-25</td>
<td>80-120</td>
<td>100-105</td>
</tr>
<tr>
<td>>12</td>
<td>15-20</td>
<td>60-100</td>
<td>110-120</td>
</tr>
</tbody>
</table>

Source: APLS guidelines
Murmurs Intro – Location

- Remember that “All Physicians Take Money” to have some logic to approaching where the murmurs will be heard loudest.

- Discuss Erb’s point.
Murmurs Intro – Heart Sounds

• Heart sounds are known as S1 and S2. Additional sounds are S3 and S4.
• S1 >> mitral (M1) and tricuspid (T1) components
• S2 >> aortic (A2) and pulmonary (P2) components

• S2 splitting is physiological during inspiration
• Inspiration causes thorax pressure to fall, increasing venous return to RA
• Opens the pulmonary valve for longer, “splitting” S2 – heard in pulmonic region
• Pathological splitting of S2 is due to increased loading on the R side
Murmurs Intro – Innocent

- Occur in 80% of normal children at some point in childhood
- May be exacerbated by febrile illness
- No associated symptoms
 - No breathlessness, cyanosis, no Hx of fainting
- Normal pulses

- Simple version: *murmurs are innocent*
 - aSymptomatic
 - Soft blowing murmur
 - Systolic murmur only
 - left Sternal edge
Heart Failure

• Heart is no longer adequately perfusing the tissues

• Diverse presentation:
 – Spectrum from severely ill new-born requiring ICU
 – Asymptomatic child with murmur

• Infants:
 – Central cyanosis
 – HF symptoms: breathlessness, sweating, fatigue on feeding, poor weight gain, circulatory collapse with hypotension and acidosis

• Children:
 – Palpitations, dizziness/syncope on exertion, exercise limitation, chest pain (very rarely)
Acyanotic HF: ASD, AVSD

- Atrial septal defect
 - Ostium *secundum* defect
 - More common

- Atrio-ventricular septal defect
 - Ostium *primum* defect
 - Associated with Down's syndrome

- Usually asymptomatic in childhood
- May develop HF symptoms
Acyanotic HF: ASD, AVSD

• Clinical features
 – Palpitations, RV heave

• MURMURS:
 – (1) Diastolic flow murmur across tricuspid valve (increased volume in RA)
 – (2) Ejection systolic murmur at upper left sternal edge (pulmonic region – RV)
 – (3) Fixed and widely split S2 (increased volume in RV)
 – AVSD, (4) apical pansystolic murmur

• ECG:
 – ASD
 • RV volume overload: RSR in V1, right axis deviation
 • RA enlargement: Tall peaked P waves
 • Right BBB
 – AVSD
 • RV hypertrophy / right BBB
 • LV hypertrophy
 • 1st degree heart block
Acyanotic HF: ASD, AVSD

• CXR (both):
 – RA and RV enlargement
 – Prominent pulmonary trunk
 – Increased pulmonary vascular markings

• Mx:
 – ASD:
 • 80% of small defects Dx in infancy close spontaneously by 18 months
 • RV volume-loading necessitates closure with a transcatheter device
 – AVSD:
 • Requires elective surgical repair between 2 and 5 years
Acyanotic HF: VSD

- VSD
 - Flow of blood through ventricular septum at lower L sternal edge
 - When large, cardiac output must increase
Acyanotic HF: VSD

• Clinical features:
 – Small – Asymptomatic
 – Moderate/Large – full HF symptoms

• MURMURS
• Small:
 – Grade 1-4/6 pansystolic murmur at LLSE
 – Palpable thrill

• Moderate/Large:
 – Blowing, pansystolic murmur at lower left sternal edge
 – Apical, mid-diastolic, low-pitched rumble due to increased flow across mitral valve
 – N.B. S2 is NOT split
Acyanotic HF: VSD

- **ECG:**
 - Biventricular hypertrophy
 - Notched/peaked P waves (think atrial hypertrophy)

- **CXR:**
 - Cardiomegaly
 - Pulmonary plethora

- **Mx:**
- Small – significant % close spontaneously in first 2 years
- **Medical:**
 - Control HF, prevention of pulmonary vascular disease, maintenance of normal growth

- **Surgical indications:**
 - Failure of medical treatment, large defect in infant aged 6-12 months with reversible pulmonary hypertension, aortic regurgitation
Acyanotic HF: Patent Ductus Arteriosus

• Increased flow from the aorta to the pulmonary artery

• Clinical features:
 – Small: Asymptomatic
 – Large: Recurrent LRTIs, failure to thrive, eventual HF, endarteritis risk
 – Exertional dyspnoea
 – Bounding peripheral pulses
 – Significant shunt may cause pulmonary hypertension

• MURMURS
 – Continuous machinery murmur below left clavicle
Acyanotic HF: Patent Ductus Arteriosus

- **ECG:**
 - Left ventricular hypertrophy

- **CXR:**
 - Cardiomegaly
 - Pulmonary plethora

- **Mx:**
 - Small: may close spontaneously

- **Medical:**
 - Prostaglandin synthetase inhibitors (ibuprofen, aspirin), HF Mx

- **Surgical:**
 - Ligation / transcatheter occlusion
Acyanotic HF: Coarctation of Aorta

• Different for sick newborn / well child

• Clinical features:
 – Presentation may be abrupt and acute
 • Ductal closure precipitates circulatory collapse
 • Blockage proximal to duct (B), RV can supply blood to lower limbs
 • Duct closure can also worsen the coarctation itself (A or C)
 – Reduced / absent lower extremity pulses
 – BP discrepancy upper and lower limbs

• NO MURMURS
Cyanotic HF: Tetralogy of Fallot

- VSD
- Overriding aorta
- RV outflow tract obstruction
- RV hypertrophy

• Clinical features:
 - Severe cyanosis
 • May lead to MI, CVAs
 - Clubbing
 - Squatting on exercise

• Ejection systolic murmur
 - ULSE, pulmonic region
Cyanotic HF: Tetralogy of Fallot

- ECG
 - Normal at birth
 - RV hypertrophy when older

- CXR
 - Relatively small, “boot-shaped” heart
 - Pulmonary artery “bay”
 - Oligaemic lung fields (reduced vessels)

- Mx
- Surgical:
 - Neonates: Shunt from subclavian to pulmonary artery
 - 6 months of age: close VSD, relieve RV obstruction
- Hypercyanotic spells:
 - Sedation, analgesia, IV beta blocker, fluids, HCO3-
Cyanotic HF: Transposition of Great Arteries

• Coexistent ASD/VSD/PDA allows compatibility with life

• Clinical features:
 – Severe cyanosis
 – Spontaneous PDA closure reduces mixing

• MURMURS
• S2 single and loud
• VSD / PDA murmur
Cyanotic HF: Transposition of Great Arteries

• ECG:
 – Normal

• CXR:
 – “Egg on side”
 – Pulmonary plethora

• Mx:
• Medical:
 – Prostaglandin infusion – keep the PDA open
• Surgical:
 – Balloon atrial septostomy to produce ASD
 – Arterial switch procedure in neonatal period
Conclusion

• Keep calm!
• Work through the steps methodically
• Remember the basics of murmurs before tackling the question
• Remember the difference between acyanotic and cyanotic conditions
Flow List

• Is there a murmur?
 – No? Coarctation of aorta
• Is the murmur continuous?
 – Yes? Patent ductus arteriosus
• How is S2 described?
 – Fixed & split? R heart loading, ASD or AVSD
 – Single S2? Transposition of great arteries
 – No? VSD or Tetralogy of Fallot
• Differentiate VSD/ToF
 – Cyanosis v acyanosis
 – CXR – cardiomegaly v small “boot shaped” heart
 – ECG – A & V hypertrophy v no change / RV hypertrophy
<table>
<thead>
<tr>
<th></th>
<th>Murmur type</th>
<th>Place</th>
<th>Other weird sounds</th>
<th>CXR</th>
<th>ECG</th>
<th>Mx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Still's</td>
<td>Soft, mid-systole</td>
<td>Left sternal border</td>
<td>-</td>
<td>Normal</td>
<td>Normal</td>
<td>None</td>
</tr>
<tr>
<td>Venous hum</td>
<td>Soft, throughout cardiac cycle</td>
<td>Beneath clavicles, bilateral</td>
<td>-</td>
<td>Normal</td>
<td>Normal</td>
<td>None</td>
</tr>
<tr>
<td>Neck bruit</td>
<td>Soft, ejection systolic</td>
<td>Above clavicle</td>
<td>-</td>
<td>Normal</td>
<td>Normal</td>
<td>None</td>
</tr>
<tr>
<td>ASD</td>
<td>Ejection systolic 2 or 3/6</td>
<td>Upper left sternal edge</td>
<td>Fixed and widely split 2nd heart sound</td>
<td>Cardio-megaly + enlarged pulm arteries + increased pulm vascular markings</td>
<td>Right axis deviation (due to RV hypertrophy) + RSR in V1 (RBBB)</td>
<td>If RV dilation Cardiac catheterisation 3-5 years</td>
</tr>
<tr>
<td>Small VSD</td>
<td>Loud, pansystolic</td>
<td>Lower left sternal edge</td>
<td>Quiet pulm 2nd sound</td>
<td>Normal</td>
<td>Normal</td>
<td>None</td>
</tr>
<tr>
<td>Large VSD (=/+ than aortic valve)</td>
<td>Mid-diastolic murmur</td>
<td>Apical</td>
<td>May be soft pansystolic murmur + loud pulm 2nd sound</td>
<td>Cardio-megaly + enlarged pulm arteries + increased pulm vascular markings + pulm oedema</td>
<td>Bi-ventricular hyper-trophy (by 2 months) + upright T wave in V1 (if RV hypertrophy due to pulm hypertension)</td>
<td>Diuretics (captopril) and calories Surgery at 3-6 months</td>
</tr>
<tr>
<td>AVSD</td>
<td>Pansystolic murmur</td>
<td>Apical</td>
<td>If large: cardiomegaly + increased pulmonary markings</td>
<td>Superior QRS axis (negative AVF)</td>
<td>Surgical 3 years</td>
<td>None</td>
</tr>
<tr>
<td>Condition</td>
<td>Murmur type</td>
<td>Place</td>
<td>Other weird sounds</td>
<td>CXR</td>
<td>ECG</td>
<td>Mx</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
<td>------------------------------</td>
<td>------------------------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>PDA</td>
<td>Continuous (machinery) murmur</td>
<td>Beneath left clavicle</td>
<td>Bounding pulse</td>
<td>Normal (or may look like a large VSD)</td>
<td>Normal (or may look like a large VSD)</td>
<td>Cardiac catheter coil or occlusion at 1 year Surgical ligation (Prem: indomethacin / ibuprofen)</td>
</tr>
<tr>
<td>Coarctation</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Cardiomegaly</td>
<td>Normal</td>
<td>Maintain duct patency (PG) Surgery ASAP</td>
</tr>
<tr>
<td>Tetralogy</td>
<td>Loud 3 to 6/6 harsh ejection systolic murmur</td>
<td>Left sternal edge</td>
<td></td>
<td>Small heart + up tilted apex (boot-shaped) + pulmonary artery bay (concavity) on left heart border + decreased pulmonary vascular markings</td>
<td>RV hypertrophy (upright T wave in V1) develops with age</td>
<td>Definitive treatment at 6 months (close VSD, relieve RV outflow obstruction) If cyanosed infant, may need shunt between subclavian and pulmonary arteries</td>
</tr>
<tr>
<td>Transposition</td>
<td>Usually no murmur (may be systolic murmur)</td>
<td>Normal</td>
<td>Loud and single 2nd heart sound</td>
<td>Egg on its side cardiac shadow + increased pulmonary vascular markings</td>
<td>Normal</td>
<td>Maintain duct patency (PG) or balloon atrial septoplasty Surgery in first few days of life</td>
</tr>
</tbody>
</table>
MCQs

Q1) A previously well 3-day-old becomes unresponsive and dusky on the neonatal unit. A CXR shows an “egg on side” appearance of the heart. Which of the following 3 are correct?

- A) There may be a machinery murmur below the left clavicle
- B) ECG will show RV hypertrophy
- C) There is a loud, single second heart sound
- D) There is a ejection systolic murmur at the ULSE
- E) Give an immediate prostaglandin infusion
Flow List

• Is there a murmur?
 – No? Coarctation of aorta
• Is the murmur continuous?
 – Yes? Patent ductus arteriosus
• How is S2 described?
 – Fixed & split? R heart loading, ASD or AVSD
 – Single S2? Transposition of great arteries
 – No? VSD or Tetralogy of Fallot
• Differentiate VSD/ToF
 – Cyanosis v acyanosis
 – CXR – cardiomegaly v small “boot shaped” heart
 – ECG – A & V hypertrophy v no change / RV hypertrophy
MCQs

• Q2) A 2-year old child is brought to the GP by his mother after having problems feeding, and not “putting on as much weight as his sister did”. Which of the 3 below are true of a ventricular septal defect?
 – A) Fixed, split second heart sound
 – B) Pansystolic murmur heard at the LLSE
 – C) Tricuspid diastolic murmur
 – D) Physiological splitting of S2
 – E) May require HF medication for feeding problems
Flow List

• Is there a murmur?
 – No? Coarctation of aorta
• Is the murmur continuous?
 – Yes? Patent ductus arteriosus
• How is S2 described?
 – Fixed & split? R heart loading, ASD or AVSD
 – Single S2? Transposition of great arteries
 – No? VSD or Tetralogy of Fallot
• Differentiate VSD/ToF
 – Cyanosis v acyanosis
 – CXR – cardiomegaly v small “boot shaped” heart
 – ECG – A & V hypertrophy v no change / RV hypertrophy
MCQs

• Q3) On a routine baby check, you notice that a 48 hour old baby has absent femoral pulses. Which three of these is correct?
 – A) There is a loud, late systolic murmur at the upper left sternal edge
 – B) Blood pressure may be higher in the right arm than the right leg
 – C) Closure of the patent ductus arteriosus may cause circulatory collapse
 – D) The patient may appear to have peripheral cyanosis
 – E) There are no murmurs present